ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ

А.И. Захарова, Л.С. Чепкунас

Для 14 землетрясений земного шара с очагами в земной коре (табл. 1) представлены основные и динамические параметры очагов. Шесть землетрясений мира (3, 5, 6, 8, 11, 14) являются сильнейшими в этом году и имеют магнитуды $M \ge 7.0$, остальные с меньшими магнитудами локализованы в Индийском океане (12) и семь – в сейсмоактивных зонах территории России: одно (1) – в районе Дагестана, два (2, 4) – в Байкальском регионе, два (9, 10) – в районе Курильских островов, два (7, 13) – в районе Командорских островов.

Основные параметры очагов землетрясений: время возникновения t_0 , координаты гипоцентра φ , λ , h даны по данным двух источников: I – Сейсмологический бюллетень ЦОМЭ ОИФЗ РАН [1]; II – Международный сейсмологический бюллетень (ISC) [2] (табл. 1). Значения гипоцентров в I и II получены по временам первых вступлений *P*-волн на основе годографа Джеффриса-Буллена [3], но по разным системам наблюдений.

Здесь же показаны магнитуды *MPSP*, m_b , *MPLP*, *MS*, *Ms*. Различия в параметрах t_0 , φ , λ , h по I и II в большинстве случаев находятся в пределах погрешности их определений. Максимальные расхождения в магнитудах *MPSP*, полученных по продольным *P*-волнам, достигают 0.4 единицы магнитуды. Во всех случаях значения m_b меньше *MPSP*, что объясняется методикой их расчета. Для m_b выбирается интервал записи *P*-волн в пределах 5 *c* от вступления, в то время как для *MPSP* он может быть увеличен до 40–60 *c* [4]. Сравнение магнитуд (*MS* [MOS], *Ms* [ISC]), полученных по поверхностным волнам, показывает, что в основном различия не превышают 0.2 единиц магнитуд. Максимальные расхождения в 0.5 единиц отмечаются только в одном случае – для землетрясения в районе оз. Байкал (№ 2). Заметим, что для этого же землетрясения наблюдаются отмеченные выше максимальные различия между *MPSP* и m_b . Возможно, это связано с разной выборкой данных для расчета магнитуд.

Механизмы очагов приведены в табл. 2 и показаны на рис. 1 в стереографической проекции (нижняя полусфера) для десяти землетрясений (1, 2, 4, 7–10, 12–14). Для четырех наиболее сильных и значимых землетрясений Евразии (3, 5, 6, 11) параметры механизмов очагов даны в [6], где наряду с другими сильными ощутимыми землетрясениями мира дано подробное описание приведенных решений и сопоставление с сейсмотектоническими особенностями районов возникновения землетрясений. Все решения механизмов очагов даны по данным HRVD из [2]. Они получены для модели двойной пары сил по методу тензора момента центроида [5].

Землетрясение (1), произошедшее в Дагестане, возникло под действием напряжения сжатия, ориентированного в северо-восточном направлении. Обе нодальные плоскости имеют северо-западное простирание, плоскость *NP*1 залегает полого, другая *NP*2 – более круто, тип движения по обеим плоскостям – взброс.

Землетрясения (2, 4) в районе оз. Байкал произошли в условиях растягивающих напряжений, ориентированных в северо-западном-юго-восточном направлении. Нодальные плоскости простираются с северо-востока на юго-запад, подвижки по ним представлены сбросами. Эти решения механизмов очагов типичны для рифтовой структуры Прибайкалья, как показано в [7].

Механизмы очагов землетрясений (9, 10) в районе Курильских островов имеют похожие решения, оба землетрясения возникли под действием сжимающих напряжений востокюго-восточного направления. Простирание обеих нодальных плоскостей землетрясения (10) и одной (*NP*2) землетрясения (9) – северо-восточное, практически совпадающее с простиранием Курильской дуги, а простирание плоскости *NP*1 землетрясения (9) – близмеридиональное. Подвижки имеют тип взброса.

N⁰	Дата,	Вариант	<i>t</i> ₀ ,	Ги	поцентр			Магн	ит <u>у</u> ды		Район		
	дм		ч мин с	φ°, N	λ° , Ε	h,	Mw	MPSP,	MPLP	MS,			
						км		$m_{\rm b}$		Ms			
1	31.01	Ι	05 07 11.4	43.19	46.96	17	5.7	5.5	6.0	5.5	Восточный Кавказ		
		II	05 07 14.1	43.25	46.90	36		5.3		5.5			
2	25.02	Ι	18 58 28.9	51.80	104.98	10	5.9	6.0	6.2	6.1	Район озера Байкал		
		II	18 58 29.6	51.63	104.91	10		5.6		5.6			
3	08.03	Ι	12 25 46.0	52.07	159.37	33		6.1	6.8	7.1	У восточного побережья		
											Камчатки		
		II	12 25 46.8	52.07	159.43	37		5.7		6.8			
4	21.03	Ι	16 16 01.5	55.86	110.39	10	5.8	5.8	5.9	6.0	Район озера Байкал		
		II	16 16 02.3	55.90	110.23	10		5.5		5.8			
5	17.08	Ι	00 01 37.4	40.85	30.01	10		6.4	7.2	7.5	Турция		
		II	00 01 38.6	40.76	29.95	17		6.1		7.7			
6	20.09	Ι	17 47 19.3	23.96	121.00	33		6.7	7.6	7.7	Остров Тайвань		
		II	17 47 16.3	23.85	120.87	13		6.3		7.6			
7	28.09	Ι	05 00 39.2	54.65	168.18	10	6.1	5.7	6.3	6.0	Район Командорских		
											островов		
		II	05 00 43.2	54.59	168.15	35		5.4		6.1			
8	16.10	Ι	09 46 46.4	34.64	-116.32	10	7.1	6.5	6.6	7.5	Южная Калифорния		
		II	09 46 45.0	34.58	-116.44	0		6.2		7.4			
9	24.10	Ι	04 21 42.4	44.72	149.36	42	6.0	6.1	6.3	5.9	Курильские острова,		
											Россия		
		II	04 21 9.0	44.58	149.44	17		5.8		5.7			
10	11.11	Ι	02 41 05.1	49.32	155.58	33	6.1	5.8		5.8	Курильские острова,		
											Россия		
_		II	02 41 07.3	49.34	155.62	51		5.7		5.8			
11	12.11	Ι	16 57 21.2	41.15	31.19	10		6.5	7.3	7.2	Турция		
_		II	16 57 19.8	40.81	31.19	10		6.2		7.4			
12	15.11	Ι	05 42 47.4	-1.19	88.83	33	7.0	6.5	7.0	6.8	Юг Индийского океана		
		II	05 42 43.1	-1.37	88.97	10		6.2		6.9			
13	26.11	Ι	00 28 59.7	55.06	165.25	33	6.0	5.7	6.2	6.0	Район Командорских		
											островов		
_		II	00 28 56.0	55.13	165.35	5		5.7		5.8			
14	26.11	Ι	13 21 16.2	-16.42	168.34	33	7.5	6.3	7.2	7.2	Острова Новые Гебриды		
		II	13 21 16.0	-16.32	168.13	35		6.3		7.2			

Таблица 1. Сведения о землетрясениях за 1999 г.

Землетрясения (7, 13) близ Командорских островов характеризуются разными механизмами очагов. Первое из них произошло под действием напряжения растяжения, направленного на северо-восток. Нодальные плоскости простираются с северо-запада на юговосток, подвижки по ним представлены сбросами. Второе землетрясение возникло в условиях напряжений сжатия и растяжения, близких по величине и ориентированных в юго-юговосточном направлении и юго-западном соответственно. Обе нодальные плоскости крутого залегания, одна (*NP*1) – субширотного простирания, другая (*NP*2) – субмеридионального. Подвижки по ним представлены сдвигами с компонентами сброса.

Землетрясение (8) в Южной Калифорнии произошло под действием небольшого превалирования напряжений сжатия. Обе нодальные плоскости имеют крутое падение. Подвижки по ним – сдвиги с компонентами взброса.

Землетрясение (12), произошедшее в южной части Индийского океана, возникло в условиях, близких по величине сжимающих и растягивающих напряжений, с небольшим преобладанием напряжений растяжения. Обе плоскости имеют крутое падение, *NP*1 ориентирована в северо-восточном направлении, *NP*2 – в северо-западном. Тип движения по обеим плоскостям – сдвиг с компонентами сброса.

В очаге землетрясения (14) отмечено явное преобладание напряжений сжатия, обе плоскости имеют близмеридиональное простирание. Подвижки по ним, как по пологой плоскости (*NP*1), так и по крутой (*NP*2) – взбросы.

Рис. 1. Механизмы очагов землетрясений 1999 г.

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернены области волн сжатия.

Таблица 2. Параметры механизмов очагов (оси главных напряжений и нодальные плоскости) по [2]

№	Дата,	t_0 ,	h,	Магнитуды			Оси главных напряжений						Нодальные плоскости					
	дм	ч мин с	км	Mw	MS/n	MPSP/n	Т		N		Р		NP1		NP2			
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
1	31.01	05 07 11.4	17*	5.7	5.5/29	5.5/29	71	262	13	132	14	38	111	33	66	319	60	105
2	25.02	18 58 28.9	10*	5.9	6.1/25	6.0/50	9	334	2	243	81	140	242	54	-93	66	36	-86
4	21.03	16 16 01.5	10	5.8	6.0/32	5.8/39	1	136	3	226	87	25	223	44	-94	50	47	-86
7	28.09	05 00 39.2	10*	6.1	6.0/32	5.7/31	12	63	7	332	77	212	162	34	-78	327	56	-98
8	16.10	09 46 46.4	10	7.1	7.5/25	6.5/23	11	292	79	96	3	201	336	80	174	67	85	10
9	24.10	04 21 42.4	42	6.0	5.9/32	6.1/28	65	214	21	3	12	98	350	60	65	213	38	126
10	11.11	02 41 05.1	33	6.1	5.8/34	5.8/53	75	294	2	33	15	123	217	31	95	31	60	87
12	15.11	05 42 47.4	10	7.0	6.8/34	6.5/33	2	238	73	140	17	329	12	76	-11	105	80	-166
13	26.11	00 28 59.7	33	6.0	6.0/32	5.7/54	9	243	70	359	18	150	288	71	-173	196	84	-20
14	26.11	13 21 16.2	33	7.5	7.2/26	6.3/12	70	317	11	194	17	100	174	30	67	20	63	103

Динамические параметры очагов всех четырнадцати землетрясений рассчитаны по спектрам продольных волн, зарегистрированных цифровой аппаратурой IRIS на станциях «Обнинск» (OBN), «Арти» (ARU) и «Талая» (TLY) (табл. 3). Привлечение волновых форм землетрясений по записям этих станций для определения динамических параметров продиктовано их расположением на эпицентральных расстояниях менее 100°. Согласно методике их расчета по [8, 9] спектры исправлялись за амплитудно-частотные характеристики аппаратуры и условия распространения *P*-волн. Станционные спектры, приведенные к очагу, показаны на рис. 2. Для восьми землетрясений (2–4, 6–9, 12) приведены характеристики спектров по станции «Обнинск» (уровень Ω_0 длиннопериодной ветви спектра, частота f_{Π} точки перелома спектра, частота угловой точки f_0), по которым рассчитаны их динамические параметры (сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения), а также характеристики разрыва в очагах (длина *L* и подвижка \bar{u}). Для остальных шести землетрясений из динамические параметров рассчитан только сейсмический момент M_0 по величине Ω_0 , прочие динамические параметров из и «Талая» ноправок за частотную характеристику земной коры.

Рис. 2. Очаговые спектры *Р*-волн, записанные на станции «Обнинск» Номера спектров соответствуют номерам землетрясений в табл. 1.

Таблица 3. Характеристики спектров *P*-волн и динамические параметры очагов землетрясений по записям цифровой аппаратуры IRIS

N⁰	Дата,	t_0 ,	Станция	Mw	Δ°	$\Omega_0 \cdot 10^{-4}$,	$f_{\rm n} \cdot 10^{-2}$,	$f_0 \cdot 10^{-2}$,	$M_0 \cdot 10^{19}$,	$L \cdot 10^{3}$,	$\Delta \sigma \cdot 10^5$,	$\overline{\eta}\sigma \cdot 10^5$	ū,
_	дм	ч мин с				м∙с	Гц	Гц	Н∙м	\mathcal{M}	H/M^2	H/M^2	м
1	31.01	05 07 11.4	TLY	5.7	38.39	0.051	15.8		0.08				
2	25.02	18 58 28.9	OBN	5.9	32.34	0.033	17.8	26.9	0.11	18	6.6	28.4	0.12
3	08.03	12 25 46.0	OBN	6.9	63.00	0.891	5.01	9.12	3.5	54	7.8	28.2	0.44
4	21.03	16 16 01.5	OBN	5.8	32.42	0.038	22.9	25.1	0.12	20	5.2	18.4	0.11
5	17.08	00 01 38.6	ARU	7.5	24.22	17.80	11.2		9.5				
6	20.09	17 47 16.3	OBN	7.7	67.57	0.316	5.01	10.0	13.5	49	40.2	58.1	2.05
7	28.09	05 00 43.2	OBN	6.1	63.62	0.059	12.6	21.3	0.23	22	7.6	9.6	0.17
8	16.10	09 46 45.0	OBN	7.1	87.62	0.380	4.16	15.8	3.0	31	3.5	130.7	1.13
9	24.10	04 21 42.4	OBN	6.0	65.46	0.050	5.37	31.6	0.38	18	22.8	4.1	0.43
10	11.11	02 41 07.3	ARU	6.1	54.25	0.251	3.47		0.43				
11	12.11	16 57 19.8	TLY	7.2	49.11	4.570	4.57		10.4				
12	15.11	05 42 43.1	OBN	7.0	70.50	0.282	12.0	20.9	1.2	24	30.4	29.2	0.76
13	26.11	00 28 56.0	TLY	6.0	35.87	0.078	21.8		0.12				
14	26.11	13 21 16.0	TLY	7.5	88.10	2.510	11.5		7.9				

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1999 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 1999–2000.
- 2. Bulletin of the International Seismological Centre (for 1999). Berkshire: ISC, 2000.
- Jeffreys H., Bullen K.E. Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. – 65 p.
- 4. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях ЕССН СССР. М.: Наука, 1982. 272 с.
- 5. Dzievonski A., Chou T. and Woodhouse J. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. 86. № B4. P. 2825–2852.
- 6. Старовойт О.Е., Захарова А.И., Рогожин Е.А., Михайлова Р.С., Пойгина С.Г. Евразия. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 7. Балакина Л.М., Захарова А.И., Москвина А.Г., Чепкунас Л.С. Закономерная связь механизмов очагов землетрясений с геологическим строением районов // Физика Земли. 1996. № 3. С. 33–52.
- 8. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 9. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология – 1989. – № 2. – С. 66–79.